GENERALIZED COUETTE FLOW OF A NONLINEARLY
VISCOPLASTIC FLUID

Z. P. Shul'man and V. F. Volchenok UDC 532.542:532.135
The generalized Couette flow of a nonlinearly viscoplastic fluid is studied theoretically.

Let us consider the established flow of a nonlinearly viscoplastic fluid between two piates, the upper of
which is moving with a constant velocity U in the direction of the Ox axis. A constant pressure gradient grad
p=A acts in the gap. Its origin can be due to mechanical or other causes, such as the action on a ferromag-
netic suspension of a magnetic field running along the channel axis. The direction of the velocity vector U can
coincide with A or be opposite to it (Fig. 1).

The following three modes of flow are possible, depending on the rheophysical parameters of the fluid, the
magnitude and direction of the pressure gradient, and the velocity U:

1) flow with a quasisolid zone (the core) within the stream;
2) flow with a core adjacent to the upper or lower plate;
3) flow without a core.

To describe the rheological behavior of the fluid we use the generalized model [1]
1 1 i
n

T =+ )"

with the rheological parameters m, n, and mp (all real numbers).

0.1)

In the generalized coordinates 7*=1/74 and yH= ;.'W/Tg‘the flow curve (0.1) is transformed to the form [2]
1
= (1 %= ™ Y (0.2)

Some particular forms of flow curves at the v* and V¥ axes are presented in Fig. 2. Forclarity,the dimen-
sional coefficient % = 1o{B"TV/NM jg taken as equal to unity.

§1. The Core within the Stream‘

For the chosen statement of the problem and the conditions of attachment to bothwalls of the channel, the
. equation of motion is written in the form

op dt
0= — L+ —, 1.1
PP + 3 (1.1)
from which
T = Ay — y,) (1.2)

Here y, is the integration constant, which has the meaning of the coordinate of the plane in which the tangential
shear stress equals zero.

If U =0, then the core is located, generally speaking, asymmetrically relative to the midplane, and one
must consider the two regions of shear flow (I: 7<0 and II: 7>0) and the zone of quasisolid flow III (Fig. 1)
separately
<0, 1, <y <¥o
Brrs<Osvsbe i lemo, y=y, (1.3)
I1:7>0, y, << y<h,

>0, Yoy < Yo
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Fig. 1. On the statement of the problem.
Fig. 2. Flow curves: 1) m=1; n=2; 2) m=n=2; 3) m=Y%; n=1; 4 m
n=1; 5) m=n=1; 6) m=n=1.

Allowing for the signs of 7 for regions I and II, from (0.1) we obtain

1

1 1
oo qV. \—
[: 0,—n=”+——-, 1 m,
<0, (—7) Ty - ( ", dy )
1 I
Hit>0 1" =14 —knp v, A "" .
Let us formulate the problems in the dimensionless form
1 1 i 1
dW 4 a Tm dW" = gy Fm
o dtl :—[(‘Qo‘_‘g) ’_BO] 1 aT:‘:[(G_‘:"O) “ﬁO] <1'4)
with the boundary conditions
W (0)=0, Wy(l)=1. (1.5)
After simple transformations we obtain
alV, () = _\] (— 1yCk, —ﬁo (€ — 8% —&], 0<<ELE,
pperi &,
(1.6)
We@ = s Z (— e ~ﬁo (E—E)% — (1 =), §<E<1,
where =
L e s N .7
n Rl (m — k)!

When m and n are integers, in particular, the series in (1.6) are finite sums and one can obtain expres-
sions for the velocity profiles in a clearer form (Table 1).

From the condition 7=7y at y=y; and y=y, we obtain
& "51 = Po, gz—Eo:ﬁo, & —& = 2B, (1.8)
It follows from (1.8) that in a mode of flow with a core within the stream the parameter ¢, also determines
the middle of the core. And even if the ordinate ¢y does not coincide with the middle of the region of flow (an
asymmetrical location of the core), the plane where the shear stress is equal to zero is still located in the
middle of the core. We note also that in the mode of flow under consideration, with fixed conditions of flow the
width of the core is constant and equal to 28 regardless of the position of the core within the channel.

To determine the value of ¢y we use the condition Wi{£) = Wy(£,), from which, on the strength of (1.8), we
have

oo

oc:V(
o=

n ( £ )Ek ——Egh] {(1.9)
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TABLE 1. Expressions for the Velocity Distribution
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Now let us determine the region of variation of the quantities ¢ and B, within which flow with a core
within the stream is realized. The parameter 3, determines the width of the core while the value of o charac-
terizes its position. For a fixed value of 8, upon an increase in o (i.e., in the velocity of the upper plate) the
core drops down, retaining its relative width. The value at which the core is adjacent to the lower plate is
determined from (1.9). Taking =0, £ =8¢, and &, =28, we have

alow - v ("‘ 1 kC:n ___5“ (1 —BO -—-ﬁ k] (1.10)
A 0
For negative o the core rises up with an increase in {ae[. The value of « at which the core is adjacent to the
upper plate is determined from the condition £, =1, £=1—f;, and 1 — 28,=¢,, from which we have

k
§ 11— ) — B, (.11)

Cﬂup [ p— E (—— l)kafl )
k=1
For a stationary upper plate (a¢=0) we have £,=0.5; i.e., the core is located symmetrically relative to the mid-

plane. For values of o which are equal in absolute value but opposite in sign the displacements of the core
upward and downward are symmetrical relative to the midplane ¢=0.5.

The case of =0 has the meaning of confined quasi-Poiseuille flow in a channel with stationary walls. In
the case when the core lies within the region of flow the equation for the determination of ¢q takes the form

k.

V (— n’fc,,, — ﬁo [(1 — &) — &5 = 0.

k =0
For this case with n>1 and any m there is one solution £, =0.5 and, depending on the value of §;, two other
solutions of the form

E13243 = 0'5 -+ fmn (ﬁa)v

where fn(By) is some nonnegative function of 8, whose form depends on the values of m and n. In the case of
n=1 (the presence of only one solution ¢=0.5) the core is symmetrically located in the region of flow and has
a width h;=2B,. Inthe presence of the solutions fg,_5 the core is symmetrically located but now it has a width

hy=2(Bg+ Imn(Fy)). (We note that fmn(B8y) =B,. And furthermore, when ;= 0.5 the core fills the entire region of
flow.)

Let us present examples for the solutions ggy-3 with a=0:

1) For

m=1,n=2 le/g—_d d= (@ +a)—2aV@F a, a=f— (1302%);
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2) for

bL2)+21V b+ 1 16 A
m=n==2 foo~L/—~g,g-( )bz — :?BO,C—U‘W_)‘

§.2, The Core Adjacent to One of the Plates

If the core is adjacent to the upper wall, <0, the velocity profile is determined from the equation

o k
~ | e e
Wap <E>—; ( 1)"0%:60 [(E — &)™ —E3. (2.1)

The constant ¢y is determined from the condition Wup(’él) =1. Since {y—¢;=py, for £ we have

oo

&

a:E(—Wc&e—l B —e 5 2.2)

B=0 B

If the core is adjacent to the lower plate (« > 0), then the velocity profile is determined by the expression

Wiow (€)= 1+ -V(—x)’ec (€ — &) —(1—E)%. 2.3)

The constant ¢, is determined from the condition Wlow(éz) =0. Since {7 £=By, we have

o= S‘ (— 1)kc,,1 po" [(] — E)% — BEA]. (2.4)

k__

We note that ¢, is no longer the middle of the core actually remaining in the region of flow but of a core
of width 28, extending through the plate, as it were. Therefore, one allows ¢y >1 for (2.2) and £y <0 for (2.4).

The case when £, =0 and £,=1, i.e., when ¢; coincides with the surfaces of the lower and upper plates,
respectively, and the shear stress 7 conserves its sign everywhere in the channel, is of considerable interest.

If £4=1 and o <0 then the corresponding « is

o k
ehms = ¥ (— 1/Ch —B7 B (2.5)
k=0 k
Similarly,
Alg,=0 = — Og,= (2.6)

§3. Flow without a Core

This mode occurs when the core passes beyond the limits of the channel, as it were. Two cases should
be distinguished: « >0 and o <0, i.e., when the core passes beyond the lower or the upper plate.

If @< 0, then the velocity profile is determined from (2.1). To find £, we use the boundary condition
Wup(1) =1, from which

aup= ¥ (= I)kcm = so [ — D)% — 5. (3.1)
k=0
If @>0, then from the condition Wi45w(0) =0 we get
%low =haup' (3.2)

The limiting values of gy are £=1+8y (£1=1) and £ =—f (£,=0). Accordingly,

1
Oig =1 p, = — 1 "C,kn
{o=1+B, kEo (— 1) o

B 185 — (1 + )™ — —iop, ©3

With a further increase in [af (£9>1+8y, £9<—By) the "core™ gradually departs beyond the plate to infinity.

In the limiting case when ;= = < a linear velocity profile is established in the gap.
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TABLE 2. Equations of the Characteristic Curves
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§4. Regions of the Mode of Flow

We designate as D; the region of flow with the core within the stream; D, is that with the core at the
lower plate; D; with the core adjacent to the upper plate; Dy with the core "gone" beyond the lower plate; Dy
with the core "gone™ beyond the upper plate.

The curves Ty and T', separating the region of flow with the core within the stream are determined from
the conditions (1.10) and (1.11)

o

e NY (e !
ot

€

f’o)Fk _ Bg;;],

k-0

20 R

\ A .

Nyra = — Y (= DFCh —BS 11— o)™ — ¥

3
k=0

(here B, is considered not as a fixed but as a variable quantity). The curves I'y and I'y separating the regions of
flow with a core adjacent to one of the plates and the regions of flow without a core are determined from (3.3)
and (3.4)*:

o

: k
Lia=— ¥ (—1VC —— B4 B — (1 + B,
(]

k=0
o 1 _l{
w = N (— DFCh— BT (B — (1 = B)™).
o £,
k=0
The curves Ty and I'; as well as T3 and I'y are symmetrical to each other relative to the straight line o=
0 in the plane 0of,.

*Sentence as in Russian original, no Eq. (3.4) occurs in original article — Publisher.
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Fig. 3. Profiles of flow velocity: a) §;=0.2: 1) ¢=0.05; 2) o=
0.1; 3) @=0.3; 4) ¢=0.5; 5) @=0.7; 6) @=—0.7; 7) &==0.5; 8)
@=—0.3; 9) ¢=—0.1; b) ¢=0.1: 1) By=0; 2) By=0.1; 3) §;=0.2;
4) By=0.4; 5) a=—0.1, B=0.4. m=n=1.

Starting with the time when £, =0 (or ¢,=1),the shear stress 7 conserves its sign over the entire width of
the channel, namely, 7>0 (v<0). Inthis connection, in addition to these curves one can introduce the char-
acteristic curves S; and S, which determine the region of sign-constancy of 7 in the plane 0cfy. By virtue of
(2.5) and (2.6) we have

Sta= (— 1)ECE,

k=0

1 2
€

- k
Spra=— _S_] (= ¥R B 11— i
The form of the equations of the curves Iy, I's, and S; for some concrete values of m and n are presented
in Table 2. These curves characterize the critical relationships between the velocity U and pressure gradient
A and the rheological characteristics 7y and 7 (for fixed m and n). We note that the curves I'; and Iy diverge
from the 08 axis for n<1, are parallel to the axis for n=1 (a kind of "boundary situation"), while they con-
verge asymptotically to the 08; axis for n>1.

The velocity profiles are presented in Fig. 3.

For the flow of a specific medium in a certain channel (g, Nps M, and n are known constants and the
channel width h is given) the condition 8;=const is equivalent to the condition that grad p=A is a fixed quantity.
And then the variables ¢ are equivalent to the variables U. The distribution of the velocity profiles as a func-
tion of the velocity U of the upper plate for a fixed pressure gradient is shown in Fig. 3a. Similarly, the dis~
tribution of the velocity profiles as a function of A for a fixed velocity U is given in Fig. 3b. The width of the
core is proportional to A~

The criteria o and B, can also serve for the estimation of the mode of flow in a channel when the pres-
sure gradient grad p is variable. For example, for any m andn, flow in 2 mode with a core within the stream
is possible if

B =0 <0.5. (4.1)
I |gradp)
If n=1, then when
o=V~ 05, (4.2)
h (lgrad pih) "
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only a mode of flow without a core is possible. These results emerge directly from the properties of the
curves I constructed in the axes o« and B; for the case of grad p=const.

NOTATION

Dimensional quantities: U, velocity of upper plate; A, pressure gradient; 1y, limiting shear stress;
Nps analog of plastic viscosity; m, n, nonlinearity parameters of flow curve; h, channel width; y;, y,, bound-
aries of core; V(y), flow velocity; ¥, shear velocity. Dimensionless quantities: W=V/U,flow velocity; { =
y/, vertical coordinate; ¢y, ¢,, boundaries of core; ¢;, coordinate of the plane in which the shear stress equals

m
zero; 3=T7/Ah, reduced shear stress; a=y,Ui(An)" and p,=tydhr , parameters.
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STABILITY OF OPERATION OF AN APPARATUS CONTAINING
A GRANULAR BED FLUIDIZED BY A GAS STREAM

V. A. Borodulya, P. A, Aref'ev, UDC 532.546
V. I. Kovenskii, and V. V. Zav'yalov

The results of numerical experiments on the investigation of the stability of the fluidization
process relative to finite perturbations and its behavior upon crossing the boundary of sta-
bility are presented.

In [1] the problem of the stability of the fluidization process was formulated in a framework within which
the fluidized bed was considered as a single structureless element with certain operating characteristics, and
the boundary of the region of stability in the space of the parameters of the process was studied in a linear
approximation.

The present report is a continuation of [1]. The stability of the fluidization process relative to finite per-
turbations is demonstrated by a numerical experiment and its behavior upon crossing the boundary of the region
of stability is studied.

In [1] a model of a fluidized bed was proposed which is described by the following equations:

71> mH - mg = k(9 q,) + kg = p* =% 1)

H—H,

g ==q, - pSH -0~ (3)

From the system (1)-(3) we get the equation
‘H - alH - (a, + a3H“2)H -~ a1+ g, =0, 4)
where
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